FORMULATION AND CHARACTERIZATION OF FEBUXOSTAT AND IBUPROFEN LOADED TOPICAL HYDROGEL FOR TRANSDERMAL POTENTIAL AND ANTIGOUT EFFICACY.

PRATIK YUVRAJ DHOLE ^{1*}, KAKASAHEB J. KORE², SUCHETA DILIP BHISE², MADHURI S KESKAR², RUSHIKESH KAILAS GHULE¹, NAVNATH DHONDIRAM MADNE¹& RAJKUMAR V. SHETE³

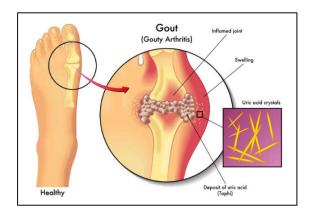
ABSTRACT:

Gout is a metabolic condition that results in joint inflammation. Taking painkillers or anti-inflammatory drugs can help reduce the pain. It is the kind of arthritis that is most understood and explained. Febuxostat acts on COX enzymes by inhibiting synthesis of uric acid in blood and Ibuprofen minimizes inflammation in joints by avoiding first pass metabolism. A hydrogel formulation was prepared using a combination of drug and polymers, including Febuxostat and Ibuprofen were incorporated into the hydrogel at optimized concentrations which are soluble in hydrophilic polymer PEG 400, hydroxypropyl methylcellulose (HPMC) and Carbopol 934 respectively. The formulated hydrogel was characterized for its physicochemical properties, including viscosity, pH, % drug content, melting point, Zeta Potential, *In -Vitro* Drug Release, *Ex- Vivo* Skin Permeation.

KEYWORDS: Gout, Febuxostat, Ibuprofen, Topical Hydrogel, PEG 400.

INTRODUCTION:

Hydrogels consist of polymer network that absorbs and retain vast quantities of water1Hydrophilic groups in the polymeric network hydrate in aqueous environments to form a hydrogel structure(Ahmed 2015a). Another description is that it is a polymeric material that will no dissolve in water but shows the ability to expand and keep a large amount of water inside its structure. Because of their high-water content, they are quite flexible, much like genuine tissue. The hydrophilic functional group affixed to the polymeric backbone gives its ability to absorb water, whilst the crosslinks interconnected network chains provide it its opposition to dissolution¹. A type of arthritis called gout is caused by the formation of monosodium urate (MSU) crystals in the joints². When the concentration of uric acid at physiological pH exceeds its solubility limit, which is 6.7-7 mg/dl, it may nucleate and form crystals in tissues1and joints³.


The human purine metabolism culminates in uric acid, which is produced by the hypoxanthine-xanthine-uric acid cascade. Xanthine oxidase (XO) catalyzes both of the aforementioned reactions. The two pharmacological approaches now used to decrease urate in gout include increasing urine uric acid excretion with a uricosuric drug and decreasing urate synthesis with allopurinol, a xanthine oxidase (XO) inhibitor⁴. Gout treatment usually includes NSAIDS steroids or colchicine, probenecid, allopurinol, and febuxostatletc⁵.

¹Rajgad Dnyanpeeth's College of Pharmacy Bhor, Savitribai Phule Pune University, Pune, Maharashtra,

²Department of pharmaceutics. Rajgad Dnyanpeeth's College of Pharmacy Bhor, Pune

³Department of Pharmacology. Rajgad Dnyanpeeth's College of Pharmacy, Bhor, Pune 412206. India.

The objective of this study is to formulate and characterize a topical hydrogel containing febuxostat and ibuprofen for transdermal delivery, aiming to enhance antigout efficacy and reduce systemic side effects. The developed hydrogel formulation will be evaluated for its physicochemical properties, in vitro release, and skin permeation characteristics. This study aims to provide a novel and effective topical treatment option for gout patients, minimizing the risks associated with oral administration and improving overall quality of life.

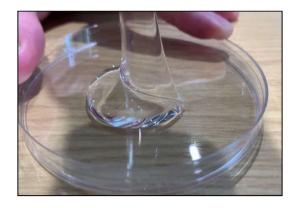


Fig.1: Gout inflammation Characterizes by Topical Hydrogel

MATERIALS & METHODS:

Source of Chemicals:

The materials which are used for preparation of topical hydrogel are as follows:

Chemicals Sr. No. **Suppliers** Febuxostat Aarti pharma 1. 2. Sourav chemicals Ibuprofen 3. Polyethylene Glycol 400 Sourav chemicals 4. Carbopol 934 Sourav chemicals Hydroxy propyl methyl cellulose Sourav chemicals

Table No. 1. List of Material used with their supplier and role.

Experimental work:

Physical Characterization of Febuxostat and Ibuprofen:

Physical characterization consists of evaluation of color, odor, appearance of drug. In this color of drug checked by visual observation and organoleptic characterization of drug.

Determination of Melting Point:

The melting point of Febuxostat and Ibuprofen was determined by Digital Melting Point Apparatus.

Solubility:

As results shown that Febuxostat and Ibuprofen more soluble in hydrophilic polymer polyethylene glycol 400 had the strongest solute-solvent interaction solubility⁶³. Based on these findings, PEG-400 appears to be the optimal co-solvent for FBX and IBU, but very soluble in most organic solvents like ethanol, methanol, acetone and dichloromethane.

Analytical Methodology:

UV Spectrophotometric Analysis

Determination of λ max of Febuxostat in Methanol:

Weigh accurately a small amount of febuxostat standard powder and dissolve it in a suitable solvent to prepare a stock solution (e.g., $10 \mu g/mL$). Set up the UV-Vis spectrophotometer to scan a wavelength range (e.g., 200-400 nm) to cover the expected absorbance range of febuxostat. Measure the absorbance of the Febuxostat solution against a blank solvent. Identify the wavelength at which the absorbance is maximum, which is the λ max of Febuxostat.

Calibration curve determination by UV-Vis Spectrophotometry:Febuxostat

Preparation of Stock Solution:

- 1. Weigh accurately 10 mg of Ibuprofen standard powder.
- 2. Dissolve the Febuxostat in methanol to prepare a stock solution of 100 μg/ml.

Preparation of standard stock solution: Febuxostat (In Methanol and PBS pH 7.4)

- 1. Febuxostat 10 mg was accurately weighed and transferred to 100 mL volumetric flask. It was dissolved and diluted up to the mark with solvent to obtain 100 μg/mL as standard stock solution⁶⁴.
- 2. From the stock-I, 10 ml sample was withdrawn by pipette and diluted to 100 ml by using methanol.

Determination of λ max of Ibuprofen in Methanol:

Weigh accurately a small amount of ibuprofen standard powder and dissolve it in a suitable solvent to prepare a stock solution (e.g., $10 \mu g/mL$). Set up the UV-Vis spectrophotometer to scan a wavelength range (e.g., 200-400 nm) to cover the expected absorbance range of ibuprofen. Measure the absorbance of the ibuprofen solution against a blank solvent. Identify the wavelength at which the absorbance is maximum, which is the λ max of Ibuprofen.

Calibration curve determination by UV-Vis Spectrophotometry: Ibuprofen Preparation of Stock Solution

- 1. Weigh accurately 10 mg of ibuprofen standard powder.
- 2. Dissolve the ibuprofen powder in a suitable solvent (e.g., methanol) to prepare a stock solution of 100 μg/ml.

3. Preparation of Standard Solutions

- 1. Prepare a series of standard solutions by diluting the stock solution to different concentrations (e.g., 10, 20, 30, 40, 50 and $60 \mu g/ml$).
- 2. Use a suitable solvent to dilute the stock solution.⁶⁷

Differential Scanning Calorimetry:

Differential Scanning Calorimetry (DSC) is a thermal analysis technique used to study the thermal properties of materials. Here's a general outline for conducting DSC analysis on febuxostat and ibuprofen. The interaction studied were carried out using differential scanning calorimetry and DSC curve represented as heat flow v/s temperature.

Drug- Excipient Compatibility Study by FTIR Spectroscopy:

For the purpose of identifying any potential chemical interaction between the drug and the excipients, a method called infrared spectra was used. A physical mixture (1:1) of the drug and its excipients was prepared and mixed. The mixture was scanned using Bruker FTIR Spectrophotometer from 3500-500 cm⁻¹. IR spectrum observed the physical combination was compared to that of the pure drug and excipients.

Formulation of topical hydrogel of Febuxostat and Ibuprofen

Experimental Design⁶⁶

The central composite design was used for optimization of viscosity and drug content for febuxostat and ibuprofen. With the aid of software Design-Expert® (version 13), the trial design was completed. In this design, two factor at 2 different levels were evaluated which gives nine combinations. The amount of Carbopol 934 and HPMC 400, were selected as independent variables. Each factor is studied at low, intermediate and high levels. The dependent variable selected for study viscosity and % Drug Content.

Table No. 2: Independent Variables and their values

Independent Variable	Low level (-)	Intermediate level (±)	High level (+)
X ₁ =Carbopol 934	0.5%	1.25%	2%
$X_2 = HPMC$	0.5%	1.25%	2%

Table No. 3: Formulation Batches of Hydrogel as per Central Composite Design

SR NO	Formulation Batches	API- Febuxostat	API- Ibuprofen	A: Carbopol 934	В: НРМС
1.	FIH 1	80	80	20	20
2.	FIH 2	80	80	20	5
3.	FIH 3	80	80	5	20
4.	FIH 4	80	80	12.5	12.5
5.	FIH 5	80	80	12.5	20
6.	FIH 6	80	80	5	12.5
7.	FIH 7	80	80	20	12.5
8.	FIH 8	80	80	5	5
9.	FIH 9	80	80	12.5	5

^{*}Note- Quantity expressed in milligram

Preparation of Hydrogel: Preparation of the Gel Base (Carbopol 934 in sufficient amount of water under intensive stirring for 24hr) Solubilization of drugs: Addition of Drugs in Solvent to solubilizes completely (Addition of Febuxostat and Ibuprofen in minimum amount of solvent Polyethylene glycol 400) Preloading of drug in Prepared gel: Add Soluble drug in prepared gel Addition of Crosslinker HPMC to the gel base (Stir until uniform Mixture obtain and Stir for 8 Hr. Until Homogenous) Mixing of both phases The Viscous mixture allow to stand for 16 h to remove air entrap bubbles then Add drug solution to Hydrogel Neutralization and pH Adjustment (Triethanolamine) Packaging and Storage

Fig. 2: Method of Preparation of Hydrogel

Solubility:

As results shown that Febuxostat and Ibuprofen more soluble in polyethylene glycol 400 had the strongest solute-solvent interaction solubility³. Based on these findings, PEG-400 appears to be the optimal cosolvent for FBX and IBU, but very soluble in most organic solvents like ethanol, methanol, acetone and dichloromethane.

Melting Point⁴:

The melting point of febuxostat is typically reported as around 209° C and the Ibuprofen exhibits a melting point range between 75 and 77° C⁴.

Calibration curve determination by UV-Vis Spectrophotometry:

Preparation of standard stock solution of febuxostat (in Methanol and PBS pH 7.4) Febuxostat 10 mg was accurately weighed and transferred to 100 mL volumetric flask. It was dissolved and diluted up to the mark with solvent to obtain $100 \,\mu\text{g/mL}$ as standard stock solution⁵.

FTIR Spectroscopy:

By comparing the spectra, it was possible to determine whether the drug and excipients were compatible. The IR spectra of the pure drug (Febuxostat and Ibuprofen) and excipients, as well as mixtures of the two, were recorded by FTIR.

Differential Scanning Calorimetry:

The structural, crystal and physical state characterization of Febuxostat and Ibuprofen, the DSC study was performed for pure drug, and formulation.

Zeta potential:

Zeta potential is an essential parameter for designing stable, effective, and patient-friendly topical hydrogels. It helps optimize drug delivery, stability, and skin interaction while maintaining the desired physical properties of the formulation.

Viscosity and pH:

Viscosity determines how easily the hydrogel can be spread on the skin. An optimal viscosity ensures the hydrogel stays in place after application without dripping or running.²¹ The pH of the hydrogel must match or be close to the skin's natural pH (around 5.5) to avoid irritation or discomfort. The pH was measured in each gel, using a pH meter, which was calibrated before each use with standard buffer solutions at pH 4, 7, 9. The electrode was inserted in to the sample 10 min priors to taking the reading at room temperature.

Spreadability study:

A hydrogel with good spreadability is easier to apply uniformly over the desired area, enhancing user comfort and ensuring consistent application.

In-Vitro Drug release study:

In-vitro drug release will be employing by Franz diffusion cell apparatus. IVDR studies quantify the rate and extent of drug release from the hydrogel matrix, ensuring sustained or controlled delivery based on therapeutic requirements.

Drug Content studies:

These studies ensure that the hydrogel contains the intended amount of drug and releases it effectively, safely, and consistently. Accurate drug content ensures the hydrogel delivers the required therapeutic dose.

Table No. 4: Formulation Table

Run	API Febuxostat	API Ibuprofen	A:Carbopol 934	В:НРМС
	mg	mg	%	%
1	80	80	2	2
2	80	80	2	0.5
3	80	80	0.5	2
4	80	80	1.25	1.25
5	80	80	1.25	2
6	80	80	0.5	1.25
7	80	80	2	1.25
8	80	80	0.5	0.5
9	80	80	1.25	0.5

Result & Discussion:

Pre-formulation Evaluation:

The drug Febuxostat and Ibuprofen was evaluated for physical state, color, odor was noted down.

Table No. 5: Physical Characterization of Drug

Tests	Febuxostat	Ibuprofen
Physical State	White crystalline powder	White crystalline solid
Odour	Odorless	Characteristic
Appearance	Homogeneous texture	Colorless

Determination of Melting Point –

The melting point of Febuxostat & Ibuprofen was determined by using Digital Melting Point Apparatus and was found to be 209.3°C & 76.30°C Respectively.

Table No. 6: Determination of Melting Point.

Sr. No	Standard M.P. (°C)	Observed M.P. (°C)	Mean M.P. (°C)
1	E.L.	209.3°C	
2	Febuxostat 210°C-214 °C	211.4°C	209.3°C
3		207.2°C	
1	II	75.9°C	
2	Ibuprofen 75°C-78°C	76.01°C	76.30°C
3		77.0°C	

Solubility:

As results shown that Febuxostat and Ibuprofen more soluble in polyethylene glycol 400 had the strongest solute-solvent interaction solubility¹¹. Based on these findings, PEG-400 appears to be the optimal cosolvent for FBX and IBU, but very soluble in most organic solvents like ethanol, methanol, acetone and dichloromethane.

Table No. 7: Solubility Study

API	Solubility	Solubility In Research
Febuxostat	Freely Soluble in organic Solvents likeN,N-dimethylformamide Methanol, Ethanol etc.	Freely Soluble in lipophilic Solvent like PEG 400 Which Shows Highest Solubility Compare to other solvents
Ibuprofen	Freely Soluble in organic Solvents like methanol, Ethanol, Acetone and Dichloromethane etc.	Freely Soluble in lipophilic Solvent like PEG 400 Which Shows Highest Solubility Compare to other solvents

Calibration curve determination by UV-Vis Spectrophotometry of Febuxostat in methanol:

The table shows the absorbance value of different concentration of febuxostat in methanol at wavelength 312 nm& Ibuprofen in methanol at wavelength 258 nm.

Table No. 8: Calibration curve determination by UV-Vis Spectrophotometry of Febuxostat in methanol

SR. NO	Concentration (µg/ml)	Absorbance 315 nm
1.	2	0.0001
2.	4	0.0017
3.	6	0.0038
4.	8	0.0061
5.	10	0.0085

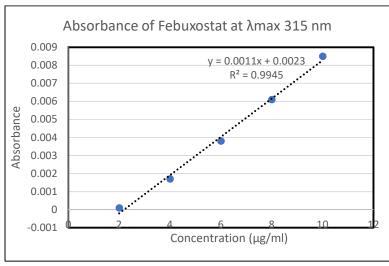


Fig. 3: Calibration curve of Febuxostat in Methanol.

Table No. 9: Calibration curve determination by UV-Vis Spectrophotometry of Ibuprofen in methanol

SR. NO	Concentration (µg/ml)	Absorbance 258 nm
1.	2	0.0101
2.	4	0.015
3.	6	0.021
4.	8	0.0255
5.	10	0.0317

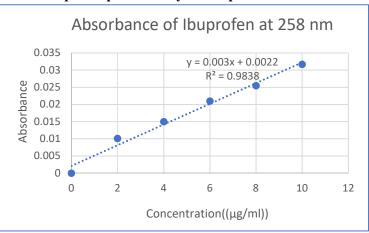


Fig. 4: Calibration curve of ibuprofen in Methanol.

Differential Scanning Calorimetry Study:

Interpretation of Differential Scanning Calorimeter of Febuxostat:

The DSC studies was carried out for pure drug Febuxostat & Ibuprofen. The thermogram revealed that occurrence of sharp endothermic peak at 210.93°C.

Table No. 10: DSC Thermogram Peaks

Drug	Melting Point/ temperature (°C)		
Febuxostat	Peak Onset	Peak	Peak Endset
	210.93	211.67	214.57

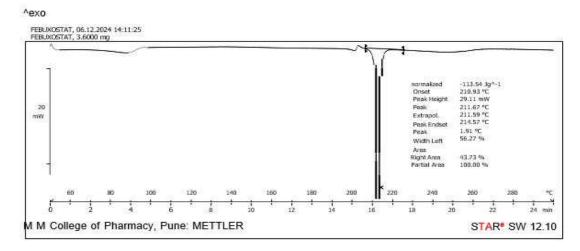


Fig. 5: DSC of Febuxostat.

Fourier Transform Infrared Spectroscopy:

Table No. 11: Compatibility study of Febuxostat by FTIR:

Functional Group	Standard Range (cm ⁻¹)	Observed Range (cm ⁻¹)
R-CH ₃	3000-2850	2873
C≡N	2300-2200	2234
C=C	1700-1600	1697, 1602
R- O -R	1300-1175	1216
R-S-R	680-610	612
C= N	1790-1690	1697
СООН	1760-1690	1697

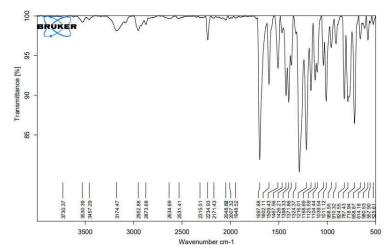


Fig. 6: Interpretation of FT-IR Spectra of Febuxostat.

Table No. 12: Compatibility study of Ibuprofen by FTIR:

Functional Group	Standard Range (cm ⁻¹)	Observed Range (cm ⁻¹)
R-CH ₃	3000-2850	2869
C=C	1600-1500	1505
C-C	1445-1405	1417
СООН	1760-1690	1706
С-Н	2970- 2850	2950

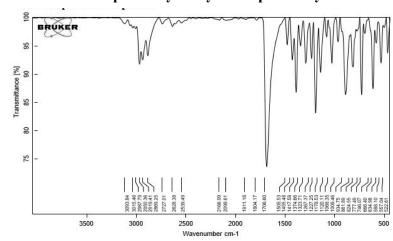


Fig. 7: Interpretation of FT-IR Spectra of Ibuprofen

Characterization of Topical Hydrogel:

Physical Characterization of Topical Hydrogel:

Table No. 13: Physical Characterization of Topical Hydrogel

Sr. No.	Tests	Results
1.	Colour	Translucent White
2.	Odour	odorless
3.	Appearance	Smoothy appears

Table No. 14: Evaluation of hydrogel Formulation.

SR NO	Formulation Batches	рН	Spreadability (gcm/sec)	Viscosity(cPs)	Drug Content (%)
1.	FIH 1	6.8	12.30	7398	75.43
2.	FIH 2	6.7	14.53	11598	91.17
3.	FIH 3	6.6	12.47	5599	82.23
4.	FIH 4	6.52	13.87	7798	86.71
5.	FIH 5	6.04	14.56	4039	87.53
6.	FIH 6	6.89	13.54	4599	83.9
7.	FIH 7	6.42	12.51	7598	88.39
8.	FIH 8	6.91	14.96	3399	89.20
9.	FIH 9	6.73	13.67	4599	82.57

(Note: FIH Stands for Febuxostat Ibuprofen Hydrogel)

Zeta Potential:

The zeta potential of FIH 2 batch was found to be -10.54 mV. The zeta potential analysis showed that charge present on Hydrogel formulation was stable.

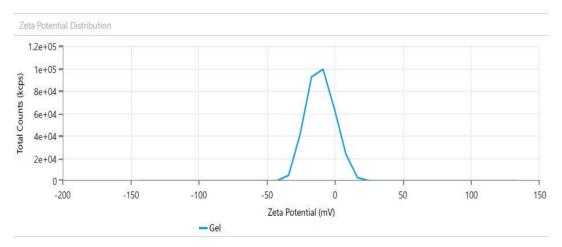


Fig. 8: Zeta Potential Peak

Fig.: Standard result of Zeta Potential.

Name	Mean	Std. Deviation	RSD	Minimum	Maximum
Zeta Potential (mV)	-10.54	-	-	-10.54	-10.54
Zeta peak 1 Mean (mV)	-10.54	1	ı	-10.54	-10.54
Conductivity (mS/cm)	0.05562	1	-	0.05562	0.05562
Wall Zeta Potential (mV)	0	-	-	0	0
Zeta Deviation (mV)	10.06	-	-	10.06	10.06
Derived Mean Count Rate (kcps)	2.678E+05	-	-	2.678E+05	2.678E+05
Reference Beam Count Rate (kcps)	1777	-	-	1777	1777
Quality Factor	1.771	-	-	1.771	1.771

In- Vitro Drug Release from Topical Hydrogel:

The *In-vitro* drug release of Topical Hydrogel was found in range of 70.40% to 82.74138% in phosphate buffer pH 6.4 for 6 hours which is shown in following table 7.17. The *in-vitro* drug release of FIH 2 batch of Hydrogel was found high % drug release.

Sr. No	Time (Min)	FIH 2 (%)	FIH 5 (%)	FIH 8 (%)
1.	30	8.65517	5.05172	6.17241
2.	60	15.2069	11.12069	13.17241
3.	120	23.22414	19.5862	24.91379
4.	180	37.15518	29.74138	36.51724
5.	240	48.4138	41.77586	49.5862
6.	300	66.82759	55.32758	63.06896
7.	360	82.74138	70.4079	78.4427

Table No. 16: In -Vitro Drug Release of Topical Hydrogel

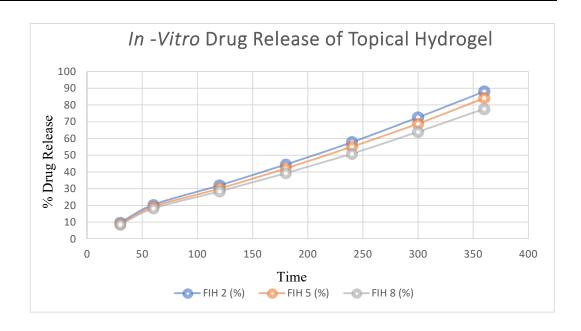


Fig. 9: In -Vitro Drug Release of Topical Hydrogel.

Ex-Vivo Permeation Study-:

The *Ex-vivo* permeation studies of FIH 2, FIH 5 and FIH 8 was found in range between 77.651% to 88.03%. From ex-vivo permeability study showed that FIH 2 batch showed high permeability of Hydrogel as compare to Batch FIH 5 and FIH 8.

Table No. 17: Ex-Vivo Permeation Study of Topical Hydrogel.

Sr. No	Time (Minn)	FIH 2 (%)	FIH 5 (%)	FIH 8 (%)
1.	30	9.65517	8.96552	8.58662
2.	60	20.3621	19.1897	18.1211
3.	120	31.9828	30.069	28.4314
4.	180	44.4138	42.1035	39.2763
5.	240	57.7759	55.069	50.9314
6.	300	72.58622	68.8448	63.9832
7.	360	88.0345	84.1035	77.6556

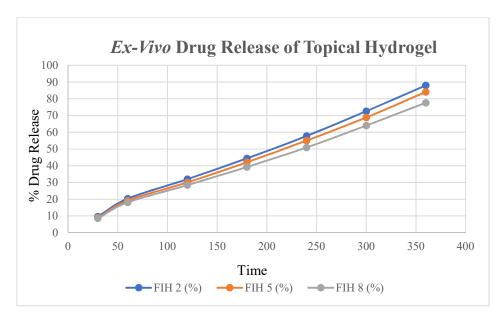


Fig. 10: Ex-Vivo Permeation Study of Topical Hydrogel

Table No. 18: Compatibility study of Hydrogel formulation by FTIR:

Table: Interpretation of FTIR spectra of Hydrogel Formulation.

Functional Group	Standard Range (cm ⁻¹)	Observed Range (cm ⁻¹)	
R-CH ₃	3000-2850	2871	
С=С	1680-1600	1602	
С-С	1445-1405	1423	
СООН	1750-1650	1697	
О-Н	3500-3200	3470	
R-O-R	1300-1175	1288	
C≡N	2300-2200	2234	
C= N	1790-1690	1697	
R-S-R	680-610	662	
С-Н	2970- 2850	2951	

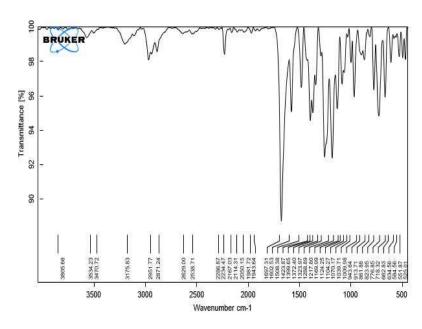


Fig. 11: Interpretation of FTIR spectra of Hydrogel Formulation.

CONCLUSION:

The formulation and characterization of Febuxostat and Ibuprofen loaded topical hydrogel have demonstrated promising results for transdermal potential and anti-gout efficacy. The developed hydrogel formulation has shown satisfactory physicochemical properties, drug contentand in vitro release profile, indicating its potential as a novel therapeutic approach for the treatment of gout and associated inflammatory conditions. The combination of Febuxostat and Ibuprofen in a Topical Hydrogel formulation may provide enhanced therapeutic benefits, improved patient compliance, and reduced side effects, making it a valuable treatment option for patients suffering from gout.

The FIH 2, FIH 5 & FIH 8 Batches of Febuxostat & Ibuprofen Topical hydrogel were optimized based on evaluation criteria. The optimized batch was characterized for its pH, Viscosity, % Drug release, Spreadability, Zeta Potential, *In-Vitro* Drug Release and *Ex-Vivo* Skin Permeation.

The FIH 2 batch of Topical Hydrogel met all physiochemical tests and assessment parameters. It exhibited higher drug release and permeability compared to FIH 5 & FIH 8 batches. Among all batches FIH 2 contains 20mg Carbopol 934 used as gelling agent and 5mg HPMC used as crosslinker which gives better consistency, viscosity and appearance as compare to other batches. Hence, FIH 2 batch gives significant results and optimized as shown by viscosity and % Drug content.

REFERENCE:

- 1. Pastore, M.N.; Kalia, Y.N.; Horstmann, M.; Roberts, M.S. Transdermal patches: History, development and pharmacology. *Br. J. Pharmacol.* **2015**, *172*, 2179–2209. [Google Scholar] [CrossRef] [Green Version]
- 2. Prausnitz, M.R.; Langer, R. Transdermal drug delivery. *Nat. Biotechnol.* **2008**, *26*, 1261–1268. [Google Scholar] [CrossRef]
- 3. Sharma, G.; Alle, M.; Chakraborty, C.; Kim, J.C. Strategies for transdermal drug delivery against bone disorders: A preclinical and clinical update. *J. Control. Release* **2021**, *336*, 375–395. [Google Scholar] [CrossRef]
- 4. Jeong, W.Y.; Kwon, M.; Choi, H.E.; Kim, K.S. Recent advances in transdermal drug delivery systems: A review. *Biomater. Res.* **2021**, *25*, 24. [Google Scholar] [CrossRef]
- 5. Jung, J.H.; Jin, S.G. Microneedle for transdermal drug delivery: Current trends and fabrication. *J. Pharm. Investig.* **2021**, *51*, 503–517. [Google Scholar] [CrossRef]
- 6. Khoury, R.; Rajamanickam, J.; Grossberg, G.T. An update on the safety of current therapies for Alzheimer's disease: Focus on rivastigmine. *Ther. Adv. Drug Saf.* **2018**, *9*, 171–178. [Google Scholar] [CrossRef]
- 7. Tsuno, N.; Mori, T.; Ishikawa, I.; Bando, N.; Park, H.; Matsumoto, Y.; Mori, I.; Tanaka, M.; Hirano, T.; Nakamura, Y. Efficacy of rivastigmine transdermal therapy on low food intake in patients with Alzheimer's disease: The Attitude Towards Food Consumption in Alzheimer's Disease Patients Revive with Rivastigmine Effects study. *Geriatr. Gerontol. Int.* **2019**, *19*, 571–576.
- 8. Kesharwani, P.; Bisht, A.; Alexander, A.; Dave, V.; Sharma, S. Biomedical Applications of Hydrogels in Drug Delivery Sys-tem: An Update. J. Drug Deliv. Sci. Technol. 2021, 66, 102914.18. Tomić M, Micov A, Pecikoza U, et al. Chapter 1 Clinical uses of nonsteroidal anti-inflammatory drugs (NSAIDs) and potential benefits of NSAIDs modified-release spreparations. Boston: Academic Press; 2017. p. 1–29.

- 9. van Durme CM, Wechalekar MD, Buchbinder R, et al. Non-steroidal anti-inflammatory drugs for acute gout. Cochrane Database Syst Rev. 2014;(12):CD010120
- 10. Magni A, Agostoni P, Bonezzi C, et al. Management of osteoarthritis: expert opinion on NSAIDs. Pain Ther. 2021;10(2):783–808. doi: 10.1007/s40122-021-00260-1
- 11. Vasilyuk VB, Syraeva GI, FaraponovaMV.. Efficacy and safety of non-steroidal anti-inflammatory drugs for acute attack of gout. PMЖ Med Rev. 2021;5(2):96–101. doi: 10.32364/2587-6821-2021-5-2-96-101
- 12. Ahmed EM. Hydrogel: Preparation, characterization, and applications: A review. JAR. 2015 Mar 1;6(2):105-21.
- 13. Terkeltaub R. Gout. Novel therapies for treatment of gout and hyperuricemia. Arthritis research & therapy. 2009 Aug;11:1-1.
- 14. Zaid Alkilani A, McCrudden MT, Donnelly RF. Transdermal drug delivery: innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum. Pharmaceutics. 2015 Oct 22;7(4):438-70.
- 15. Dalbeth N, Merriman TR, Stamp LK. Gout Lancet 2016;388(10055):2039-52.
- 16. Emmerson BT. The management of gout. New Engl J Med 1996;334(7):445–51.
- 17. Shetye SP, Godbole A, Bhilegaokar S, Gajare P. Hydrogels: Introduction, preparation, characterization and applications. Hum. J. 2015 Oct;1:47-71.
- 18. Mohite PB, Adhav SS. A hydrogels: Methods of preparation and applications. Int. J. Adv. Pharm. 2017;6(3):79-85.
- 19. Kuo CF, Grainge MJ, Zhang W, Doherty M. Global epidemiology of gout: prevalence, incidence and risk factors. Nat Rev Rheumatol 2015;11 (11):649–62.
- 20. Meshram PS, Kale SD, Labale PS, Mate KS. Hydrogel Polymer: A Unique Material for Bio-Separation, Bio-Sensing and Drug Delivery. International Advanced Research Journal in Science, Engineering and Technology. 2017;4(3).
- 21. Mallikarjuna C, Bhaskar VH, Kumar JM, Mounica R, Bolla SP. Review on Hydrogel-A novel carrier. Pharm. Tutor. 2014 Jun 1;2(6):42-51.
- 22. Khapare SS, Bhandare MG, Talele SG, Jadhav A. An Emphasis on Hydrogels for Pharmaceutical Applications. American Journal of Pharmatech Research. 2016; 6(3).

- 23. Kiatkamjornwong Suda. Superabsorbent polymers and superabsorbent polymer composites. Science Asia 2007;33(Suppl):1.39–43.
- 24. Ogata Tomonari, Nagayoshi Kana, Nagasako Tadashi, Kurihara Seiji, Nonaka Takamasa. Synthesis of hydrogel beads having phosphinic acid groups and its adsorption ability for lanthanide ions. React FunctPolym 2006;66(6):625–33
- 25. Hunkeler D. Synthesis and characterization of high molecular weight water-soluble polymers. Polym Int 1992;27:23–33.
- 26. Watanabe N, Hosoya Y, Tamura A, Kosuge H. Characteristics of water-absorbent polymer emulsions. Polym Int 1993;30:525–31.
- 27. Talaat HA, Sorour MH, Aboulnour AG, Shaalan HF, Ahmed Enas M, Awad AM, Ahmed MA. Development of a multicomponent fertilizing hydrogel with relevant techno-economic indicators. AmEuras J Agric Environ Sci 2008;3(5):764–70.
- 28. Ajji Z, Mirjalili G, Alkhatab A, Dada H. Use of electron beam for the production of hydrogel dressings. Radiat Phys Chem 2008;77(2):200–2.
- 29. Karadað E, Saraydin D, Gu^ven O. Radiation induced superabsorbent hydrogels. acrylamide/itaconic acid copolymers. Macromol Mater Eng 2001;286:34–42
- 30. Qunyi Tong, Ganwei Zhang. Rapid synthesis of a superabsorbent from a saponified starch and acrylonitrile/ AMPS graft copolymers. CarbohydrPolym2005;62:74–9
- 31. Pascual E, Sivera F. Time required for disappearance of urate crystals fromsynovialfluid after successful hypouricaemic treatment relates to the duration of gout. Ann Rheum Dis 2007;66(8):1056–8.
- 32. Singh JA. Challenges faced by patients in gout treatment: a qualitative study. JClin Rheumatol: Practical Rep Rheum Musculoskelet Dis 2014;20(3):172–4.Knox C,Wilson M, Klinger CM, et al. Drug Bank 6.0: the Drug Bank Knowledgebase for 2024
- 33. Hu M, Tomlinson B: Febuxostat in the management of hyperuricemia and chronic gout: a review. Ther Clin Risk Manag. 2008 Dec;4(6):1209-20. doi: 10.2147/tcrm.s3310.
- 34. Nishino T, Okamoto K: Mechanistic insights into xanthine oxidoreductase from development studies of candidate drugs to treat hyperuricemia and gout. J Biol Inorg Chem. 2015 Mar;20(2):195-207. doi: 10.1007/s00775-014-1210-x. Epub 2014 Dec 12.
- 35. Gerriets V, Jialal I: Febuxostat.
- 36. Grabowski BA, Khosravan R, Vernillet L, Mulford DJ: Metabolism and excretion of [14C] febuxostat, a novel nonpurine selective inhibitor of xanthine oxidase, in healthy male subjects. J Clin Pharmacol. 2011 Feb;51(2):189-201. doi: 10.1177/0091270010365549. Epub 2010 Mar 30.

- 37. Takeda: Important Safety Information on ULORIC (febuxostat) Increased Risk of Cardiovascular Fatal Outcomes
- 38. FDA Approved Products: ULORIC (febuxostat) tablets, for oral use (February 2019)
- 39. Bushra R, Aslam N: An overview of clinical pharmacology of Ibuprofen. Oman Med J. 2010 Jul;25(3):155-1661. doi: 10.5001/omj.2010.49.
- 40. Adams SS, McCullough KF, Nicholson JS: The pharmacological properties of ibuprofen, an anti-inflammatory, analysis and antipyretic agent. Arch Int Pharmacodyn Ther. 1969 Mar;178(1):115-29.
- 41. Potthast H, Dressman JB, Junginger HE, Midha KK, Oeser H, Shah VP, Vogelpoel H, Barends DM: Biowaiver monographs for immediate release solid oral dosage forms: ibuprofen. J Pharm Sci. 2005 Oct;94(10):2121-31. doi: 10.1002/jps.20444.
- 42. Sharma PK, Garg SK, Narang A: Pharmacokinetics of oral ibuprofen in premature infants. J Clin Pharmacol. 2003 Sep;43(9):968-73.
- 43. Tan SC, Patel BK, Jackson SH, Swift CG, Hutt AJ: Ibuprofen stereochemistry: double-the-trouble? Enantiomer. 1999;4(3-4):195-203.
- 44. Konstan MW, Krenicky JE, Finney MR, Kirchner HL, Hilliard KA, Hilliard JB, Davis PB, Hoppel CL: Effect of ibuprofen on neutrophil migration in vivo in cystic fibrosis and healthy subjects. J Pharmacol Exp Ther. 2003 Sep;306(3):1086-91. doi: 10.1124/jpet.103.052449. Epub 2003 Jun 13.
- 45. Moore PA, Hersh EV: Celecoxib and rofecoxib. The role of COX-2 inhibitors in dental practice. J Am Dent Assoc. 2001 Apr;132(4):451-6.
- 46. Dawood MY: Primary dysmenorrhea: advances in pathogenesis and management. Obstet Gynecol. 2006 Aug;108(2):428-41. doi: 10.1097/01.AOG.0000230214.26638.0c.
- 47. Krishna S, Pukrittayakamee S, Supanaranond W, ter Kuile F, Ruprah M, Sura T, White NJ: Fever in uncomplicated Plasmodium falciparum malaria: randomized double-'blind' comparison of ibuprofen and paracetamol treatment. Trans R Soc Trop Med Hyg. 1995 Sep-Oct;89(5):507-9.
- 48. Evers S, Rahmann A, Kraemer C, Kurlemann G, Debus O, Husstedt IW, Frese A: Treatment of childhood migraine attacks with oral zolmitriptan and ibuprofen. Neurology. 2006 Aug 8;67(3):497-9. doi: 10.1212/01.wnl.0000231138.18629.d5. Epub 2006 Jun 14.
- 49. Casper D, Yaparpalvi U, Rempel N, Werner P: Ibuprofen protects dopaminergic neurons against glutamate toxicity in vitro. Neurosci Lett. 2000 Aug 11;289(3):201-4.
- 50. Ton TG, Heckbert SR, Longstreth WT Jr, Rossing MA, Kukull WA, Franklin GM, Swanson PD, Smith-Weller T, Checkoway H: Nonsteroidal anti-inflammatory drugs and risk of Parkinson's disease. Mov Disord. 2006 Jul;21(7):964-9. doi: 10.1002/mds.20856.

- 51. Harris RE, Kasbari S, Farrar WB: Prospective study of nonsteroidal anti-inflammatory drugs and breast cancer. Oncol Rep. 1999 Jan-Feb;6(1):71-3.
- 52. Rainsford KD: Ibuprofen: pharmacology, efficacy and safety. Inflammopharmacology. 2009 Dec;17(6):275-342. doi: 10.1007/s10787-009-0016-x. Epub 2009 Nov 21.
- 53. Tracy TS, Hall SD: Metabolic inversion of (R)-ibuprofen. Epimerization and hydrolysis of ibuprofenyl-coenzyme A. Drug MetabDispos. 1992 Mar-Apr;20(2):322-7.
- 54. Rao P, Knaus EE: Evolution of nonsteroidal anti-inflammatory drugs (NSAIDs): cyclooxygenase (COX) inhibition and beyond. J Pharm Pharm Sci. 2008 Sep 20;11(2):81s-110s.
- 55. Hall AH, Smolinske SC, Conrad FL, Wruk KM, Kulig KW, Dwelle TL, Rumack BH: Ibuprofen overdose: 126 cases. Ann Emerg Med. 1986 Nov;15(11):1308-13.
- 56. Current issues in pharmacy and medical sciences.
- 57. FDA Approved Drug Products: Caldolor (ibuprofen) solution for intravenous injection.
- 58. Agrawal M, Saraf S, Saraf S, Dubey S, Puri A, Gupta U, et al. Stimuli-responsive In situ gelling system for nose-to-brain drug delivery. Journal of Controlled Release. 2020 Nov 10;327:235–65.
- 59. Tamasree M, Gopa B, Sutapa M. Hydroxy Propyl Methyl Cellulose: Different Aspects in Drug Delivery. Journal of Pharmacy and Pharmacology. 2016 Aug 10;4(8).
- 60. Safety Evaluation of Polyethylene Glycol (PEG) Compounds for Cosmetic Use
- 61. Safety of Total Daily Doses of Polyethylene Glycol (PEG) 400 Administered Orally to Healthy Male Human Subjects
- 62. The Absorption and Excretion of a Liquid Polyethylene Glycol.
- 63. Haq N, Alghaith AF, Alshehri S, Shakeel F. Solubility and Thermodynamic Data of Febuxostat in Various Mono Solvents at Different Temperatures. Molecules. 2022 Jun 23;27(13):4043. doi: 10.3390/molecules27134043. PMID: 35807294; PMCID: PMC9268579.
- 64. Cevc G, Blume G, Schätzlein A. Transfersomes-mediated transepidermal delivery improves the regiospecificity and biological activity of corticosteroids in vivo. Journal of controlled release. 1997 Apr 7;45(3):211-26
- 65. Wong RS, Dodou K. Effect of drug loading method and drug physicochemical properties on the material and drug release properties of poly (ethylene oxide) hydrogels for transdermal delivery. Polymers. 2017 Jul 19;9(7):286.
- 66. Araujo TF, Silva LP. The Utilization of Central Composite Design for the Production of Hydrogel Blends for 3D Printing. Coatings. 2024 Oct 16;14(10):1324.

- 67. Urmi KF, Nawaz MS, Islam SA. Analytical quality by design approach to RP-HPLC method development and validation for simultaneous estimation of esomeprazole and naproxen in modified-release dosage form. Future Journal of Pharmaceutical Sciences. 2022 Dec;8:1-6.
- 68. Jain A, Gautam SP, Gupta Y, Khambete H, Jain S. Development and characterization of ketoconazole emulgel for topical drug delivery. Der Chemica Sinica. 2010.
- 69. JAIN BD. Formulation Development And Evaluation Of Fluconazole Gel In Various Polymer Basesformulation Development And Evaluation Of Fluconazole Gel In Various Polymer BaseS. Asian Journal of Pharmaceutics (AJP). 2007;1(1).
- 70. Gupta GD, Gaud RS. Release rate of tenoxicam from acrypol gels. The Indian Pharmacist. 2005;4(35):69-76.
- 71. Mutimer MN, Riffkin C, Hill JA, Glickman ME, Cyr GN. Modern ointment base technology II. Comparative evaluation of bases. Journal of the American Pharmaceutical Association. 1956 Apr;45(4):212-8.
- 72. Draize JH, Woodard G, Calvery HO. Methods for the study of firitation and toxicity of substances applied topically to the skinand mucous membranes. J Pharmacol Exp Ther. 1944; 82:377–90.
- 73. Vermeer B. Skin irritation and sensitization. J Control Release. 1991;15:261–5.
- 74. Joshi M, Patravale V. Formulation and evaluation of nanostructuredlipid carrier (NLC)-based gel of Valdecoxib. Drug DevInd Pharm. 2006;32:911–8.
- 75. Mandawgade SD, Patravale VB. Development of SLNs fromnatural lipids: application to topical delivery of tretinoin. Int JPharm. 2008;363:132–8.et al. In vitro evaluation of transdermal patches of flurbiprofenwith ethyl cellulose. Acta Pol Pharm. 2014;71:287–95.
- 76. Baviskar DT, Parik VB, Jain DJ. Development of Matrix-typetransdermal delivery of lornoxicam: in vitro evaluation and pharmacodynamic and pharmacokinetic studies in albino rats.PDA J Pharm Sci Technol. 2013;67:9–22.
- 77. Echevarriá L, Blanco-Prié to MaJ, Campanero MA, Santoyo S, Ygartua P. Development and validation of a liquid chromatographicmethod for in vitro mupirocin quantification in both skinlayers and percutaneous penetration studies. J ChromatogrB.2003;796:233–41.