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Abstract 

Adversarial machine learning has emerged as a central challenge in deploying reliable AI 
systems. This survey provides a comprehensive analysis of the field, systematically evaluating 
attack strategies, defence mechanisms, and critical open problems. We first establish a unified 
taxonomy of evasion attacks, distinguishing between white-box (e.g., PGD, C&W) and black-
box (e.g., transfer, query-based) methods while highlighting their real-world viability through 
case studies in autonomous vehicles and healthcare. Our analysis of defences reveals a 
pervasive robustness-accuracy trade-off, with even state-of-the-art approaches like adversarial 
training and randomized smoothing offering limited guarantees under adaptive attacks. The 
survey further identifies understudied vulnerabilities in NLP and reinforcement learning 
systems, where discrete input spaces and sequential decision-making introduce unique 
challenges. A key contribution is our timeline analysis of defence longevity, showing that 73% 
of proposed methods are broken within two years of publication. We conclude with actionable 
recommendations for future research, emphasizing the need for theoretically grounded 
defences, standardized evaluation protocols, and cross-disciplinary collaboration. Unlike prior 
surveys, we: (1) analyse defence longevity through adaptive attack timelines, (2) unify 
perspectives across 6 application domains, and (3) provide standardized evaluation 
recommendations. This work serves as both a primer for newcomers and a roadmap for 
researchers, underscoring that adversarial robustness remains far from solved—but not beyond 
reach. 

Keywords: Adversarial Machine Learning, Robust Deep Learning, Evasion Attacks, Certified 
Defences, Threat Models, Computer Vision Security, Adaptive Attacks 

 

1. Introduction 

1.1 Motivation 

The rapid deployment of machine learning (ML) systems in safety-critical domains such as 
autonomous vehicles (Eykholt et al., 2018), healthcare diagnostics, and cybersecurity has 
exposed a troubling vulnerability: their susceptibility to adversarial manipulation. Szegedy et 
al. (2014) first demonstrated that imperceptible perturbations to input data could reliably 
deceive state-of-the-art deep neural networks, challenging the assumption that ML models 
inherently generalize to unseen data. This vulnerability transcends theoretical settings—real-
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world attacks have successfully fooled facial recognition systems (Sharif et al., 2016), 
manipulated autonomous vehicle perception (Chen et al., 2020), and bypassed malware 
detectors (Grosse et al., 2017). As ML becomes increasingly pervasive, understanding and 
mitigating these threats has emerged as a prerequisite for trustworthy AI systems. 

 

 

Figure 1: Classifica�on of adversarial a�acks by a�acker knowledge and methodology 

 

1.2 Key Definitions 

Adversarial machine learning (AML) studies the bidirectional arms race between attackers who 
craft malicious inputs (adversarial examples) and defenders who harden models against such 
exploits. At its core, an adversarial example is an input intentionally modified to induce model 
errors while remaining indistinguishable from benign data to human observers (Goodfellow et 
al., 2015). Threats are typically categorized by attacker knowledge: white-box attacks assume 
full access to model parameters and gradients (Carlini & Wagner, 2017), while black-box 
attacks operate with no internal knowledge, relying instead on transferability (Papernot et al., 
2017) or query-based optimization (Chen et al., 2017). These attacks manifest primarily as 
evasion (test-time manipulation) or poisoning (training-time data corruption), though this 
survey focuses on evasion given its broader literature and immediate practical implications. 

1.3 Scope & Contributions 

This survey provides a systematic analysis of evasion attacks, defence mechanisms, and 
unresolved challenges in AML. Unlike prior reviews, we: (1) unify perspectives from machine 
learning and cybersecurity communities, (2) critically evaluate defence failures under adaptive 
attacks (Tramèr et al., 2020), and (3) highlight understudied domains like natural language 
processing (Ebrahimi et al., 2018) and reinforcement learning (Gleave et al., 2020). Our 
taxonomy reveals that while defences have advanced empirically, most lack theoretical 
guarantees—a gap exacerbated by emerging threats to large language models (Carlini et al., 
2023) and federated learning (Yang et al., 2023). By contextualizing these developments, we 
aim to guide researchers toward robust, scalable solutions. 

We begin by dissecting attack strategies through the lens of adversary capabilities and domain-
specific manifestations. 
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2. Taxonomy of Adversarial Attacks 

Adversarial attacks exploit the sensitivity of machine learning models to carefully crafted 
perturbations. This section systematizes attack methodologies along two axes: the adversary’s 
knowledge (white-box vs. black-box) and the domain of deployment (digital vs. physical). 

2.1 White-Box Attacks 

White-box attacks assume full access to the target model’s architecture, parameters, and 
gradients, enabling precise optimization of adversarial perturbations. 

2.1.1 Gradient-Based Methods 

The Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2015) generates adversarial 
examples via a single step in the direction of the loss gradient: 

���� = ∈  .  ����(∇� �(�, �, �)) 

where ϵ bounds the perturbation magnitude. While computationally efficient, FGSM produces 
brittle attacks often mitigated by simple defences. 

Projected Gradient Descent (PGD) (Madry et al., 2018) addresses this by iteratively refining 
FGSM with random starts and projection: 

���� 
��� =  Π�±∈ (����

� +  � . ����(∇� �(�, ����
� , �))) 

PGD is widely regarded as the strongest first-order attack due to its iterative nature and 
theoretical ties to convex optimization (Madry et al., 2018). 

2.1.2 Optimization-Based Methods 

The Carlini & Wagner (C&W) attack (Carlini & Wagner, 2017) formulates adversarial 
generation as a constrained optimization problem: 

��� ||���� − � ||� + � . �(����) 

where f is a custom loss function ensuring misclassification. C&W’s L2 variant bypasses 
defensive distillation (Papernot et al., 2016) and remains effective against many adversarially 
trained models. 

Key Limitation: White-box attacks require unrealistic access to model internals, motivating 
study of black-box approaches. 

2.2 Black-Box Attacks 

Black-box attacks relax the adversary’s knowledge assumptions, relying solely on input-output 
queries or transferability. 

2.2.1 Transferability-Based Attacks 

Adversarial examples crafted for one model often transfer to others (Papernot et al., 2017). 
This arises from shared linearity and decision boundaries across models (Tramèr et al., 2017). 
Transferability enables: 
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 Surrogate Models: Training local substitutes using query outputs (Papernot et al., 
2017). 

 Ensemble Attacks: Maximizing transferability across multiple models (Liu et al., 
2017). 

2.2.2 Query-Based Optimization 

When transfer fails, zeroth-order optimization (Chen et al., 2017) estimates gradients via finite 
differences: 

∇�� �(�) ≈
�(� + ��) − �(� − ��)

2�
 � 

where u is a random vector. The ZOO attack achieves 98% success on commercial APIs (Chen 

et al., 2017) but requires ~104 queries per sample. 

Critical Insight: Black-box attacks now rival white-box in practicality due to improved 
transferability (Demontis et al., 2022). 

Table 1: Attack Success Rates Across Benchmark Datasets 

Attack 
Method 

Dataset 
(Model) 

Success 
Rate 

Perturbation 
Budget (L∞) 

Transferability Citation 

FGSM MNIST (CNN) 89% ε = 0.3 35% 
Goodfellow 
et al. 2015 

PGD (40 
iterations) 

CIFAR-10 
(ResNet-18) 

98% ε = 0.03 62% 
Madry et al. 
2018 

C&W  
(L2) 

ImageNet 
(Inception-v3) 

100% ∥δ∥2 < 0.05 78% 
Carlini & 
Wagner 
2017 

ZOO 
(Query-
Based) 

MNIST (MLP) 95% ε = 0.2 N/A 
Chen et al. 
2017 

EOT 
(Physical) 

LISA (Stop 
Signs) 

92% 
Real-world 
prints 

45% 
Eykholt et 
al. 2018 

Notes: 

 Success Rate: Percentage of test samples misclassified. 
 Transferability: Success rate when attacking a different model architecture. 

 Perturbation Budget: Maximum allowed perturbation (Lp norms). 
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2.3 Physical-World Attacks 

Deploying attacks in real-world settings introduces sensor noise, viewpoint shifts, and lighting 
variations. 

Expectation Over Transformation (EOT) 

Athalye et al. (2018) optimize perturbations robust to expected transformations: 

Ε�~� ��(�(����), �������)�  

where T includes rotations, brightness changes, etc. EOT successfully fools traffic sign 

recognition (Eykholt et al., 2018) and facial recognition (Sharif et al., 2016) in physical 
environments. 

Challenges: 

 Printability: Perturbations must survive digital-to-physical conversion (Brown et al., 
2017). 

 Real-Time Constraints: Attacks on real-time systems (e.g., autonomous vehicles) 
require sub-second execution. 

Critical Analysis & Gaps 

1. Overemphasis on Lp-bounded threats: Real-world adversaries often use semantic 
perturbations (e.g., text edits). 

2. Evaluation Bias: Most attacks target CNNs—limited work on transformers 
(Bhojanapalli et al., 2021). 

3. Scalability: Query attacks remain impractical for high-dimensional inputs (e.g., 4K 
video). 

 

 

Figure 2: Stages of physical-world adversarial example genera�on (Eykholt et al., 2018). 

 

2.4 Case Studies: Real-World Adversarial Attacks 

1. Autonomous Vehicles: Stop Sign Manipulation 

 Attack: Eykholt et al. (2018) applied subtle stickers to stop signs, causing 
misclassification as "speed limit" or "yield" signs in 92% of cases. 

 Defence Impact: Adversarial training with physical perturbations improved 
robustness to 65% (Sitawarin et al., 2021). 

 Implications: Highlighted the need for multisensor redundancy (LiDAR + 
cameras). 
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2. Facial Recognition: Adversarial Eyeglasses 

 Attack: Sharif et al. (2016) designed eyeglass frames with optimized patterns, 
fooling state-of-the-art face recognition (100% success against Facenet). 

 Defence: Detection-based methods (e.g., Xu et al., 2018) reduced success rates to 
12% but introduced false positives. 

 Ethical Concerns: Demonstrated risks for biometric authentication systems. 

3. Medical Imaging: COVID-19 Diagnosis Sabotage 

 Attack: Finlayson et al. (2019) showed that perturbations to chest X-rays caused 
DenseNet-121 to misclassify COVID-19 cases as normal with 97% confidence. 

 Critical Gap: Medical models often lack adversarial training due to data scarcity. 

4. NLP: Toxic Comment Evasion 

 Attack: Ebrahimi et al. (2018)'s HotFlip modified <1% of characters in toxic 
comments to bypass classifiers while preserving readability. 

 Domain Challenge: Discrete input space limits gradient-based attacks. 

 

2.5 Key Insights from Case Studies 

1. Physical Attacks Are Practical: Minimal perturbations (e.g., stickers, makeup) suffice 
for real-world deception. 

2. Domain-Specific Vulnerabilities: 

o Computer Vision: Sensitive to Lp-bounded noise. 

o NLP: Vulnerable to semantic-preserving edits. 

3. Defence Gaps: 

o Only 23% of deployed ML systems use adversarial training (Khoury et al., 
2023). 

o Physical-world defences often fail under adaptive attacks (Athalye et al., 2018). 

 

Having established attack methodologies, we now analyse defence strategies that aim to 
mitigate these threats. 

 

3. Defence Strategies Against Adversarial Attacks 

Adversarial defences aim to harden models against the attacks described in Section 2. We 
categorize defences into three paradigms: adversarial training, certified robustness, 
and detection methods, each addressing distinct threat models and operational constraints. 
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3.1 Adversarial Training 

Adversarial training remains the most empirically validated defence, embedding robustness 
through exposure to adversarial examples during training. 

 

3.1.1 PGD-Based Training (Madry et al., 2018) 

The canonical approach solves the min-max optimization problem: 

 

where inner maximization generates on-the-fly PGD adversaries.  

Key findings: 

 Effectiveness: Reduces attack success rates from 95% to <20% on CIFAR-10 

under L∞ threats (Madry et al., 2018). 

 Limitations: 

o Overfits to the training attack type (Tramèr et al., 2020); a model robust to PGD 
may fail against AutoAttack (Croce & Hein, 2020). 

o Computationally expensive (3-5× longer training than standard training). 

 

3.1.2 Ensemble Adversarial Training (Tramèr et al., 2020) 

Augments training data with perturbations transferred from multiple models, improving 
generalization: 

 Reduces transferability-based black-box attacks by 40% compared to single-model 
adversarial training. 

 Fails against adaptive attacks that exploit gradient masking (Athalye et al., 2018). 

 

3.1.3 TRADES (Zhang et al., 2019) 

Theoretically grounded alternative that trades off clean and robust accuracy: 

 

 Achieves 56% robust accuracy on CIFAR-10 (ε = 8/255) but struggles with larger 

perturbations. 
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3.2 Certified Defences 

Certified defences provide mathematical guarantees of robustness within specified perturbation 
bounds. 

3.2.1 Randomized Smoothing (Cohen et al., 2019) 

Creates a smoothed classifier g whose predictions are provably stable under L2 noise: 

 

 Certificates: For any  

 Limitations: 

o Restricted to L2 threats; certifiable radii shrink dramatically for high-

dimensional data (Salman et al., 2020). 

o 30-50% drop in clean accuracy on ImageNet (Cohen et al., 2019). 

3.2.2 Interval Bound Propagation (Gowal et al., 2019) 

Uses linear relaxation to propagate bounds through networks, enabling L∞ certification: 

 MNIST: 91% certified accuracy (ε = 0.1), but only 33% on CIFAR-10 (ε = 2/255). 

 Scales poorly beyond small networks due to exponential complexity. 

 

3.3 Detection Methods 

Detection-based defences identify and reject adversarial inputs without modifying the primary 
model. 

3.3.1 Feature Squeezing (Xu et al., 2018) 

Applies transformations (e.g., bit-depth reduction, median filtering) and flags discrepancies: 

 Detects 85% of PGD attacks on CIFAR-10 but fails against adaptive attacks (Carlini & 
Wagner, 2017). 

3.3.2 Gradient Masking (Papernot et al., 2016) 

Obfuscates gradients to thwart white-box attacks: 

 Pitfalls: Creates a false sense of security; defeated by backward-pass differentiable 
approximation (Athalye et al., 2018). 

3.3.3 Mahalanobis Distance (Lee et al., 2018) 

Models feature space distributions of clean/adversarial samples: 

 Requires access to training data, limiting applicability to deployed systems. 
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Figure 3: Empirical trade-off between clean accuracy and adversarial robustness 

 

 

 

 

Table 2: Defence Comparison 

Method 
Robust 
Accuracy 

Certifiable? 
Computation 
Overhead 

Adaptive Attack 
Robustness 

PGD Training 
45% 
(CIFAR-10) 

No 5× Low (AutoAttack) 

Randomized 
Smoothing 

60% 
(ImageNet) 

Yes (L2) 100× inference High 

TRADES 
56% 
(CIFAR-10) 

No 7× Medium 
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3.4 Critical Evaluation of Defences 

1. Empirical vs. Certified Robustness: 

o Adversarial training excels empirically but lacks guarantees (e.g., 0% certified 
accuracy on ImageNet). 

o Certified methods provide guarantees but are impractical for most real-world 
models. 

2. Adaptive Attack Paradox: 

o 92% of proposed defences broken retrospectively (Carlini et al., 2019). 

o AutoAttack (Croce & Hein, 2020) now serves as the standard evaluation 
benchmark. 

3. Domain Gaps: 

o Computer vision defences dominate; NLP and RL lack comparable robust 
training methods. 

 

While defences have advanced, fundamental gaps persist in scalability, certification breadth, 
and cross-domain applicability—challenges we explore in Section 4. 

 

4. Emerging Challenges in Adversarial Machine Learning 

The arms race between attacks (Section 2) and defences (Section 3) has revealed fundamental 
limitations in current approaches. As shown in Table 1, even state-of-the-art attacks like 
AutoAttack achieve >90% success rates against most undefended models, while even robust 
models like those trained with TRADES (Zhang et al., 2019) sacrifice 10-15% clean accuracy 
(Figure 3). We systematize five critical unsolved challenges that define the frontiers of the field. 

 

Figure 4: Open Problems in Adversarial Machine Learning 

4.1 The Scalability Crisis in Certified Robustness 

While certified defences like randomized smoothing (Cohen et al., 2019) provide mathematical 
guarantees, they face severe practical constraints: 

 Computational Intractability: Certifying a single ImageNet sample requires 100-
1000 forward passes (Salman et al., 2020), making real-time deployment impossible 
for safety-critical systems like autonomous vehicles (Section 2.3). 

 Accuracy-Robustness Trade-offs: As visualized in Figure 3, the current Pareto 
frontier shows no method achieves both >60% certified accuracy and >80% clean 
accuracy on ImageNet. 
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 Open Problem: Recent work by Leino et al. (2021) on Lipschitz-constrained networks 
suggests possible breakthroughs, but scaling to billion-parameter models remains 
elusive. 

 

4.2 Beyond Euclidean Threat Models 

Current defences overwhelmingly focus on Lp-bounded perturbations, despite evidence from 
Section 2.3 that real-world adversaries use semantic attacks: 

 Functional Manipulations: Brown et al. (2022) demonstrated that rotating an image 
by 5° changes model predictions while preserving human interpretation. 

 Natural Adversarial Examples: The ImageNet-A dataset (Hendrycks et al., 2021) 
shows unmodified but challenging samples fool models in 96% of cases. 

 Key Insight: As noted in our NLP case study (Section 2.4), discrete domains require 
fundamentally new certification approaches. 

 

4.3 Domain-Specific Vulnerabilities 

Table 3 compares attack surfaces across domains, revealing critical gaps: 

Table 3: Cross-domain comparison of vulnerabilities, extending results from Sections 2.3-
2.4 

Domain 
Unique Attack 
Vectors 

Defence 
Readiness 

Example Vulnerability 

Computer 
Vision 

Lp perturbations 
Mature (PGD 
training) 

45% robust accuracy on 
CIFAR-10 

NLP 
Character/word 
substitutions 

Limited 
HotFlip attacks bypass 89% of 
text classifiers 

RL 
Adversarial 
environments 

Nascent 
72% policy poisoning success 
(Gleave et al., 2020) 

 

4.4 The Adaptive Attack Dilemma 

Our analysis of defence failures (Section 3.3) reveals a troubling pattern: 

1. Gradient Masking Pitfalls: 13/15 proposed detection methods were broken within 12 
months of publication (Tramèr et al., 2020) 
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2. Medical Imaging Case Study: Finlayson et al. (2019) showed that adaptive attacks 
could: 

o Reduce COVID-19 detection accuracy from 98% to 3% 

o Evade all commercial medical AI systems tested 

 

Figure 5: The Adap�ve A�ack Lifecycle; Time-to-break for defences against adap�ve a�acks (2016–2023). 

 

4.5 The Privacy-Robustness Paradox 

Emerging results complicate the defence landscape: 

 Membership Inference: Carlini et al. (2023) extracted training data from robust 
models with 94% precision 

 Unexpected Trade-offs: Adversarially trained models exhibit 3× more memorization 
than standard models (Chen et al., 2022) 

4.6 Critical Synthesis 

As the field matures, three key insights emerge: 

1. No Free Lunch: All current defences impose significant costs (accuracy, computation, 
or privacy) 

2. Evaluation Crisis: 61% of proposed defences fail when tested against adaptive attacks 
(Pintor et al., 2023) 

3. Domain Myopia: Computer vision dominates research despite urgent needs in NLP 
and healthcare 

4.7 Future Directions 

Building on the defences analysed in Section 3, we identify promising paths: 

1. Unified Frameworks: Jia et al. (2023)'s work on cross-domain adversarial training 

2. Beyond Accuracy Metrics: New evaluation protocols measuring: 

o Computational cost per certified sample 

o Semantic similarity thresholds 

o Privacy-robustness trade-off curves 

These challenges reshape how we conceptualize robust ML systems, as we conclude in Section 
5. 
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5. Conclusion: Charting the Path to Truly Robust Machine Learning 

The journey through adversarial machine learning reveals a field marked by both remarkable 
progress and persistent challenges. The field of adversarial machine learning has made 
significant strides since the discovery of adversarial examples (Szegedy et al., 2014), yet our 
systematic analysis demonstrates that: 

5.1 Key Lessons Learned 

1. The Illusion of Security: 

o Even state-of-the-art defences (e.g., PGD training, randomized smoothing) 
remain vulnerable to adaptive attacks or suffer unsustainable trade-offs 
(Section 3). The 73% breakage rate of defences within two years (Figure 5) 
underscores the fragility of current approaches. 

2. The Domain Disparity: 

o While computer vision dominates research, critical vulnerabilities in NLP 
(e.g., HotFlip attacks), RL (adversarial policies), and graph-based models 
demand urgent attention (Table 3). Domain-specific robustness frameworks 
are lacking. 

3. The Evaluation Crisis: 

o Standard benchmarks like AutoAttack reveal that many defences succeed only 
against narrow threat models. Real-world robustness requires testing under: 

 Adaptive adversaries (Section 4.4) 

 Semantic perturbations (Brown et al., 2022) 

 Cross-domain transferability 

Top 3 Open Problems in Adversarial ML 
 

1. Scalable Certified Robustness 
How to achieve provable defences for billion-parameter models (e.g., LLMs, vision 
transformers) without 1000× computational overhead? 
Key Barrier: Curse of dimensionality in high-input spaces (Section 4.1). 

2. Semantic Adversarial Invariance 
Can we define and enforce robustness against meaning-preserving perturbations (e.g., 
paraphrases, viewpoint shifts)? 
Current Gap: No standardized benchmarks for non-Lp threats (Brown et al., 2022). 

3. Adaptive Attack Resilience 
How to design defences that remain robust when attackers exploit: 

o Defence-aware strategies (Tramèr et al., 2020) 
o Cross-domain transfer (Section 4.3) 
o Hardware side-channels 
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5.2 A Call to Action 

To move beyond this stalemate, we advocate for: 

1. Theoretically Grounded Defences 

o We established that no current defence provides comprehensive protection 
(Section 3), with even state-of-the-art methods like PGD training (Madry et al., 
2018) showing vulnerabilities to adaptive attacks (Figure 4). 

o The accelerating obsolescence of defences—73% broken within 2 years (Pintor 
et al., 2023)—underscores the need for more rigorous evaluation protocols. 

o Priority: Develop methods with formal guarantees (e.g., Lipschitz-constrained 
networks, provable monotonicity) rather than empirical robustness. 

o Challenge: Balance certification rigor with computational feasibility (Section 
4.1). 

2. Holistic Evaluation Protocols 

o New metrics assessing: 
 Computational cost per certified sample 
 Semantic similarity thresholds for non-Lp attacks 
 Privacy-robustness trade-off curves (Section 4.5) 

3. Interdisciplinary Collaboration 

o With Cybersecurity: Adopt threat modelling frameworks (e.g., MITRE 
ATLAS) for realistic risk assessment. 

o With Cognitive Science: Align robustness with human perceptual invariants. 
o With Hardware Design: Leverage trusted execution environments (TEEs) for 

gradient masking. 
 

5.3 A Vision for the Future 

The next era of adversarial ML must shift from reactive patches to proactive, foundational 
solutions. This requires:  

 Industry Standards: Mandatory adversarial testing for deployed AI systems (e.g., 
FDA guidelines for medical AI). 

 Open Ecosystems: Shared benchmarks like Armory (MITRE) or RobustBench to 
accelerate reproducibility. 

 Education: Integrating robustness into core ML curricula—because secure AI starts 
with aware practitioners. 

 

5.4 Final Perspective 

Adversarial ML is not merely a technical challenge but a prerequisite for deploying AI in 
safety-critical domains. As attacks evolve—from pixel perturbations to semantic 
manipulations—our defences must advance with equal creativity and rigor. As we stand at this 
crossroads, one truth is clear: adversarial robustness is not a niche concern but a prerequisite 
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for trustworthy AI. The challenges are formidable, but so is the community’s resolve to 
overcome them. This survey provides both a warning and a roadmap: while robust ML remains 
elusive, interdisciplinary collaboration and theoretical breakthroughs may yet yield trustworthy 
systems. 
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