Design And Analysis of Solar Charging Station by Using PVsyst Software

Mrs. P. Devi Supriya¹,B. Komala Priya², K. Nagendra Kumar³ Asst. Professor¹, Adhoc Faculty², Student³ School of Renewable Energy and Environment Institute of Science & Technology JNTUK, Kakinada. India. Department of School of Renewable Energy and Environment Institute of Science & Technology JNTUK, Kakinada. India.

ABSTRACT: In present study the expansion of solar energy in India, considering economic and technological factors, this study aims to identify barriers to the expansion of solar charging stations and simulate solar powered charging station using PVsyst (Photovoltaic system) software. The study is unique in its approach of combining technical and economic analysis to facilitate the implementation of solar energy expansion in Kakinada (Vakalapudi). To achieve this goal, the technical analysis imulating the performance of a 50kWp (kilowatt 'peak' power output of a system) grid connected solar charging station for Vakalapudi and the simulation is carried out to obtain maximum electricity production and evaluate parameters such as incident radiation, performance ratio, energy into the grid, energy output at the array, and losses, technical and economic analysis, decrease in carbon dioxide emissions (CO2) using different modules. The produced energy with specific production of 1304 kWh/kWp/year, and the performance ratio (PR) was 71.16%.

Keywords: Photovoltaics, Electrical vehicles charging station, PV Syst software, Solid works, google location for charging station, Inverter specifications, performance ratio, energy to the grid, technical and economic analysis and array losses.

I. INTRODUCTION

1.1 Introduction to Solar Energy Charging Stations:

Solar energy charging stations, often referred to as solar EV charging stations or solar carports, combine photovoltaic (PV) technology with electric vehicle charging infrastructure. The basic idea is to utilize solar panels to capture sunlight and convert it into electricity, which is then used to charge electric vehicles. These stations can take various forms, ranging from standalone solar carports with integrated charging points to solar panels installed on existing structures such as parking lots or rooftops.

1.2Design Considerations for Solar Energy Charging Stations:

1.2.1 Solar Panels:

The heart of any solar energy charging station is the solar panels. These panels, usually composed of crystalline silicon or thin-film technology, capture sunlight and convert it into electricity. The efficiency and capacity of these panels play a crucial role in determining the overall performance of the charging station.

1.2.2 Energy Storage Systems:

To ensure a continuous power supply, solar energy charging stations often incorporate energy storage systems such as batteries. These batteries store excess energy generated during peak sunlight hours, making it available for use during periods of low sunlight or high demand. This storage capacity

contributes to the reliability and stability of the charging station.

1.2.3 Charging Infrastructure:

The charging infrastructure includes electric vehicle supply equipment (EVSE) such as charging points or stations. These are strategically placed to allow vehicles to connect and recharge their batteries. The integration of smart charging technologies further enhances the efficiency of the station by optimizing charging schedules based on energy availability and demand.

1.2.4 Grid Connectivity:

Solar energy charging stations are often connected to the electrical grid. This connection serves as a backup, ensuring that vehicles can still charge when solar energy production is insufficient. Additionally, excess energy generated by the solar panels can be fed back into the grid, contributing to the overall energy ecosystem.

Electric Power Systems for Electric Vehicle CAR Charging Sttaion

Fig 1. Solar energy charging system

II .Introduction to PVSyst Software:

PVSyst is a powerful software tool designed for the analysis and simulation of photovoltaic (PV) systems. Introduced by Valentin Software, PVSyst has become a cornerstone in the renewable energy industry, providing engineers, designers, and researchers with a comprehensive platform to model and optimize solar power installations. This software is crucial for assessing the performance, efficiency, and financial viability of solar projects across various scales.

PVSyst, short for Photovoltaic Systems, is an advanced software solution tailored for the solar energy sector.

Volume 17, Issue 04, April/2025

Its primary objective is to facilitate the design, simulation, and evaluation of PV systems by offering a range of tools and features. Developed by Valentin Software, a company with a strong reputation in renewable energy software, PVSyst has gained widespread acceptance in the industry due to its accuracy and versatility.

The software is equipped to handle diverse PV applications, from residential rooftop installations to large- scale solar farms. Its user-friendly interface, coupled with a sophisticated simulation engine, allows users to model the behavior of solar power systems under various conditions accurately. PVSyst is compatible with different PV technologies, making it adaptable to the evolving landscape of solar energy.

III. A SolidWorks software-designed solar-powered charging station system is suggested:

3.1 Solid Works software introduction:

Using SolidWorks, design is a complex process that combines creativity, accuracy, and invention to bring ideas to life virtually. Dassault Systems' SolidWorks is a potent computer-aided design (CAD) programme that is used extensively across a range of sectors to create three-dimensional (3D) models and simulations. Because of its strong features and intuitive interface, this programme has established itself as a mainstay in engineering, manufacturing, and product development.

Fundamentally, SolidWorks offers engineers, designers, and architects an extensive toolkit for designing, visualizing, and evaluating their concepts in three dimensions. The programme makes use of parametric modelling, a method that lets users construct designs with restrictions, relationships, and parameters. This makes it simple to update and modify the model as the design changes.

SolidWorks' ability to do parametric design is one of its main advantages. With the help of this capability, designers may specify the sizes and connections between different parts to produce a model that is both flexible and adaptive. A design's ability to immediately reflect changes made to one section in other related parts streamlines the iterative design process and lowers the possibility of mistakes. With this parametric method, designers may explore various design iterations quickly and with increased efficiency.

Fig 2. solar powered charging station design by using SolidWorks software

IV. BEACON INVERTER 5KW AC OVERVIEW:

1.Power Rating:

The Beacon Inverter 5kW AC is designed to handle a power rating of 5 kilowatts (kW) on the alternating current (AC) side. This indicates its capacity to convert direct current (DC) power generated by solar panels into usable AC power for residential or commercial applications.

2. Photovoltaic (PV) Compatibility:

The inverter is likely compatible with standard photovoltaic solar panels. It should be able to efficiently convert the DC electricity generated by the solar panels into AC electricity suitable for powering appliances and feeding excess energy back into the grid.

3. Single or Three-Phase Operation:

Inverters can be designed for single-phase or three-phase operation, depending on the electrical requirements of the installation. The Beacon Inverter 5kW AC may support either a single-phase or three-phase electrical system, providing flexibility for various applications.

4. Efficiency and Performance:

Efficiency is a critical factor in inverter performance. The Beacon Inverter 5kW AC is expected to have a high efficiency rating, indicating how effectively it converts DC power to AC power. Look for features such as Maximum Power Point Tracking (MPPT) technology, which optimizes energy harvesting from the solar panels.

5. Compliance and Certifications:

The Beacon Inverter 5kW AC is expected to comply with relevant industry standards and certifications. This may include safety certifications, grid compliance, and adherence to regulations in different regions.

6. Durability and Weather Resistance:

Inverters are typically installed outdoors and are exposed to various weather conditions. The Beacon Inverter 5kW AC is likely designed with durability in mind, featuring robust construction and protection against factors like moisture, dust, and extreme temperatures.

7. Cooling and Heat Dissipation:

Efficient cooling mechanisms are crucial for the longevity and optimal performance of inverters. The Beacon Inverter 5kW AC may utilize advanced cooling technologies to dissipate heat generated during operation, ensuring stable and reliable performance over the long term.

8. User-Friendly Interface:

The inverter is expected to have a user-friendly interface for easy installation and configuration. This may include an LCD screen or LED indicators that provide information about the system's status, energy production, and potential issues.

9. Warranty and Support:

Manufacturers typically provide warranties for their inverters, ensuring that customers have peace of mind regarding the product's reliability. The Beacon Inverter 5kW AC is likely to come with a warranty, and the manufacturer may offer customer support services for technical assistance and issue resolution.

Fig 3. Beacon inverter 5kw ac

4.1 Location for solar powered charging station:

Fig 4. Dashboard for selecting location

ID-array		2 List of subarrays		0
aub-array name and Orientation ame PV Array Tilt 17 ient: Fixed Tilted Plane Azimuth 0	Pre-sizing Help ○ No sizing Enter planned power ④ 50.0 ✓ Resize or available area(modules) ○ [298	kWp ● → A]B ✓ ∧ 11 m² Name	#Mod #Inv.	#String #MPPT
elect the PV module vailable Now Filter All PV modules opsun 325 Wp 32V Si-mono TS-S Use optimizer Sizing voltages : Vmpp (60 Voc (-10°	Approx. needed modules 154 325 Since 2012 Manufacturer 2014 *C) 32.2 V C) 51.3 V	C Open	2 8	77 1
elect the inverter valable Now Valable Now Valage 120 V Mono 60Hz eacon S.0 kW 50 - 100 V LF Tr 60 Hz o, of inverters S Operating voltage: Input maximum voltag	Smart Power M5 Since 2003 50-100 V Global Inverter's power 40.0 kWac e: 110 V	50 Hz 60 Hz Q Open		
esign the array tumber of modules and strings d. in series 2 0 2 only possibility 2 0	Operating conditions Vmpp (60°C) 64 V Vmpp (20°C) 78 V Vmp (-10°C) 78 V Vm (-10°C) 103 V	Global system summary Nb. of modules 154 Module area 298 n	12	

Fig 5. Dash board for choosing the inverter specifications

Fig 6. Sun radiation path at Vakalapudi

	 0	NB: The peak AC output by clear conditions is 40.1 kWac.	
age pack Peak shaving			4
Battery SOC thresholds Maximum charging (OFF) Minimum discharging (OFF)	95 0 % 🗹 20 4 % 🗹	Operating conditions Info: PV array Pnom 50.1 kWp Max. output power (dear sky) 40.1 kWac Clear day excess energy 294 kWh/day Grid power limit 0.0 kW Discharging As soon as power is needed ✓	
			Ŧ
Battery input charger			
Max. charging power	40.0 kW 🔀	Max. discharging power 32.0 kW 😒	
Battery input charger Max. charging power The charging power should be ab peaks (i.e. the Previsible maximu limitation. Maximum efficiency EURO efficiency (equivalent)	40.0 kW ♥ le to absorb the Power im power), minus the Grid 97.0 % ♥ 95.0 % ♥	Max. discharging power 32.0 kW 🗹 Maximum efficiency 97.0 % 🗹 EURO efficiency 95.0 % 🗹	
Battery input charger Max. charging power The charging power should be ab peaks (i.e. the Previsible maximu limitation. Maximum efficiency EURO efficiency (equivalent)	40.0 kW ♥ le to absorb the Power im power), minus the Grid 97.0 % ♥ 95.0 % ♥	Max. discharging power 32.0 kW <table-cell> Maximum efficiency 97.0 % 😒 EURO efficiency 95.0 % 😒</table-cell>	

Fig 7. Battery Operational specifications

Fig 8. choosing tilted plane to get maximum yield

V. RESULTS AND DISCUSSION

5.1Report of Technical and economic analysis from pv syst software:

PVsyst - Simulation report

Grid-Connected System

Project: Kakinada Below Sea level

Variant: New simulation variant No 3D scene defined, no shadings System power: 50.1 kWp Vākalapūdi - India

PVsyst V7.2.11 VC0, Simulation date: 30/12/23 09:26 with v7.2.11

Project: Kakinada Below Sea level

Variant: New simulation variant

		Proje	ct summary —		
Geographical Site		Situation		Project settin	igs
Vākalapūdi		Latitude	17.01 °N	Albedo	0.20
India		Longitude	82.28 °E		
		Altitude	8 m		
		Time zone	UTC+5.5		
Meteo data					
Vākalapūdi					
Meteonorm 8.0 (1996-201)	i), Sat=78% - St	ynthetic			
10000 201					
		Syste	m summary —		
Grid-Connected Syste Simulation for year no 10	m	No 3D scene d	m summary — lefined, no shadings		
Grid-Connected Syste Simulation for year no 10	m	No 3D scene d	m summary — lefined, no shadings	User's needs	
Grid-Connected Syste Simulation for year no 10 PV Field Orientation Fixed plane	m	No 3D scene d Near Shadings No Shadings	m summary — lefined, no shadings s	User's needs Unlimited load (grid)
Grid-Connected Syste Simulation for year no 10 PV Field Orientation Fixed plane Tilt/Azimuth	m 17/0°	No 3D scene d Near Shadings No Shadings	m summary — lefined, no shadings s	User's needs Unlimited load (grid)
Grid-Connected Syste Simulation for year no 10 PV Field Orientation Fixed plane Tilt/Azimuth System information	m 17 / 0 °	No 3D scene d Near Shadings No Shadings	m summary — lefined, no shadings s	User's needs Unlimited load (grid)
Grid-Connected Syste Simulation for year no 10 PV Field Orientation Fixed plane Tilt/Azimuth System information PV Array	m 17 / 0 °	No 3D scene d Near Shadings No Shadings	m summary — lefined, no shadings s	User's needs Unlimited load (grid)
Grid-Connected Syste Simulation for year no 10 PV Field Orientation Fixed plane Tilt/Azimuth System information PV Array Nb. of modules	m 17 / 0 °	No 3D scene d Near Shadings No Shadings	m summary — lefined, no shadings s Inverters Nb. of units	User's needs Unlimited load (grid) 8 units
Grid-Connected Syste Simulation for year no 10 PV Field Orientation Fixed plane Tilt/Azimuth System information PV Array Nb. of modules Pnom total	m 17 / 0 °	No 3D scene d No 3D scene d Near Shadings No Shadings 154 units 50.1 kWp	m summary — lefined, no shadings s Inverters Nb. of units Pnom total	User's needs Unlimited load (grid) 8 units 40.0 kWac

Produced Energy 65.24 MWh/year Specific production 1304 kWh/kWp/year Perf. Ratio PR 71.16 %

		General p	arameters			
Grid-Connected System	n	No 3D scene defi	ned, no shadings			
PV Field Orientation						
Orientation		Sheds configuratio	n	Models use	be	
Fixed plane		No 3D scene defined	1	Transpositio	n	Perez
Tilt/Azimuth	17/0°			Diffuse	Perez Me	teonorm
				Circumsolar	r croz, mo	enerate
				Circumsolai		separate
Horizon		Near Shadings		User's ne	eds	
Free Horizon		No Shadings		Unlimited Io	ad (grid)	
		- PV Array Ch	naracteristics -			
PV module			Inverter			
lanufacturer		Tangun	Manufacturor			Reason
Vanuacturer		Topsun	Manufacturer		Car	Deacon
Nodel		13-5325	Model	detet and h	Sm	lant Power M5
(Original Pvsyst databa	ise)		(Original PVsyst	uatabase)		
Unit Nom. Power		325 Wp	Unit Nom. Power		5.0	00 kWac
Number of PV modules		154 units	Number of inverters			8 units
Nominal (STC)		50.1 kWp	Total power		40	.0 kWac
Modules	77 String	s x 2 In series	Operating voltage		50-10	
At operating cond. (50°C)			Pnom ratio (DC:AC)		1.2	25
Pmpp		44.6 kWp				
U mpp		68 V				
mpp		659 A				
Total Old a surray			Total land and a second			
Iotal PV power		EQ MAN	Total inverter pov	ver		O WAR
Nominal (STC)		50 KWP	Total power		4	U KVVac
lotal		154 modules	Number of inverters			8 units
Module area		298 m²	Pnom ratio		1.2	25
Cell area		265 m*				
		Array	losses			
Array Soiling Losses		Thermal Loss fac	tor	DC wiring	losses	
Loss Fraction	3.0 %	Module temperature	according to irradiance	Global array	res.	1.7 mΩ
		Uc (const)	29.0 W/m²K	Loss Fractio	on	1.5 % at ST
		Uv (wind)	0.0 W/m ² K/m/s			
Module Quality Loss		Module mismatch	losses	Strings M	ismatch lo	SS
Loss Fraction	-0.8 %	Loss Fraction	2.0 % at MPP	Loss Fractio	on	0.1 %
Module average degrad	dation 10	IAM loss factor ASHRAE Param: IAI	M = 1 - bo(1/cosi -1)			
oss factor	0.4 %/vear	bo Param.	0.05			
Mismatch due to degrada	tion					
outo dia anglada	0.4 %hupper					
mo KAS dispersion	0.4 %/year					
mp RMS dispersion						
mp RMS dispersion /mp RMS dispersion Spectral correction FirstSolar model Precipitable water estimate	d from relative hum	idity				
mp RMS dispersion Vmp RMS dispersion Spectral correction FirstSolar model Precipitable water estimate Coefficient Set	d from relative hum	idity	C2 C2 C2	3	C4	C5

		 System losses 	
Unavailability of the	he system		
Time fraction	2.0 %		
	7.3 days,		
	3 periods		

.

GlobEff Effective Global, corr. for IAM and shadings

5.2 Unavailability losses:

It is in some cases valuable to anticipate framework disappointments or upkeep stops within the generation desires. A framework inaccessibility as a division of time (or a number of days). For these disappointing hours, the framework will be considered inert (OFF) amid the recreation. The opportunity of characterizing periods of inaccessibility of the framework. Usually as a rule unusual, it is additionally conceivable to inquire PVsyst for making these periods in a arbitrary way (up to 5 periods of any length along the year).

Fig 9. Unavailability losses from PV syst report

antity units 154 1 1 1 1 1	Cost INR 3468.00 108000.00 108000.00 108000.00	Tota INF 534072.0 108000.0 108000.0
units 154 1 1 1 1	INR 3468.00 108000.00 108000.00 108000.00	INF 534072.00 108000.00 108000.00
154 1 1 1	3468.00 108000.00 108000.00 108000.00	534072.0 108000.0 108000.0
154 1 1 1	3468.00 108000.00 108000.00 108000.00	534072.0 108000.0 108000.0
1 1 1 1	108000.00 108000.00 108000.00	108000.0 108000.0
1 1 1	108000.00 108000.00 108000.00	108000.0
1 1	108000.00 108000.00	108000.0
1	108000.00	100000 0
1		108000.00
	108000.00	108000.0
154	750.00	115500.0
8	17419.35	139354.8
1	540000.00	540000.00
1	540000.00	540000.0
1	540000.00	540000.0
1	22416480.00	22416480.0
1	5400000.00	5400000.0
		30657406.8
		534072.0
	8 1 1 1	8 17419.35 1 540000.00 1 540000.00 1 540000.00 1 22416480.00 1 540000.00

Salaries	21600000.00
Repairs	5400000.00
Cleaning	5400000.00
Security fund	5400000.00
Land rent	21600000.00
Bank charges	1080000.00
Administrative, accounting	1080000.00
Subsidies	-540000000.00
Total (OPEX)	-5144040000.00
Including inflation (4.40%)	-5144040000.00
System summary	
Total installation and	200657400 04 IND

c) otom outminut	
Total installation cost	30657406.84 INR
Operating costs (incl. inflation 4.40%/year)	-5144040000.00 INR/year
Produced Energy	65.2 MWh/yea
Cost of produced energy (LCOE)	-78373 940 INR/kWh

			I	Financial and	alysis -			
Simula	tion period							
Project I	lifetime	1 years	Start year		2023			
Income	e variation ove	r time						
Inflation					4.40 %/year			
Producti	ion variation (agin	g)			0.00 %/year			
Discount	t rate				5.50 %/year			
Income	e dependent ex	cpenses						
Income t	tax rate				37.00 %/year			
Other in	come tax				0.00 %/year			
Dividend	ds				0.00 %/year			
Financ	ing							
Own fun	nds			30642	273.19 INR			
Subsidie	95			15	133.65 INR			
Electric	city sale							
Feed-in	tariff				7.0000 INR/kWh			
Duration	of tariff warranty	0			20 years			
Annual o	connection tax				0.00 INR/kWh			
Annual t	tariff variation				0.0 %/year			
Feed-in	tariff decrease aff	ter warranty			50.00 %			
Return	on investment	t						
Payback	k period				0.0 years			
Net pres	sent value (NPV)			3041426	849.26 INR			
Return o	on investment (RC	DI)			9925.6 %			
			Detaile	d economic r	esults (INR)			
	Electricity	Run.	Deprec.	Taxable	Taxes	After-tax	Cumul.	%
	sale	costs	allow.	income		profit	profit	amorti.
2023	456705	-5144040000	0	5144496705	1903463781	3241032924	3041426849	10025.6%
Total	456705	-5144040000	0	5144496705	1903463781	3241032924	3041426849	10025.6%

Fig.10 CO₂ Emissions

Volume 17, Issue 04, April/2025

VI. CONCLUSION AND FUTURE SCOPE

The solar charging station project, using PVSYST software, successfully designed and simulated solar charging station, maximizing energy generation potential. The construction phase involved site preparation, foundation installation, and panel mounting techniques. The solar charging station was connected to the electrical grid, adhering to interconnection agreements and regulatory requirements. Regular maintenance activities were implemented to optimize performance and longevity. The solar charging station significantly reduced carbon emissions of 249.10tons and air pollution compared to conventional energy sources, contributing to the local ecosystem and mitigating the project's environmental impact, and we got the performance ratio of 71.16% and specific energy production of 1304 kwh/year and also installation cost is 30crores. The array losses are about 3.0% and thermal losses of 29.0 Wm² and the 8 nits of inverter with max efficiency, and also no.of used modules are 154 contains 50 kWp at STC conditions.

Solar charging stations have proven effective in reducing environmental pollution, improving community health, and enhancing overall quality of life. Collaboration between researchers, engineers, and communities is vital to address challenges and optimize the effectiveness of solar charging systems. The roadmap for future implementations of solar charging stations includes increasing capacity, enhancing energy storage technologies, integrating with smart grids, promoting research and development, and strengthening policy support to accelerate the transition towards a sustainable and renewable energy future.

REFERENCES:

[1]. Escola Técnica Superior d'Énginyeria Industrial de Barcelona (ETSEIB), Universitat

Politécnica de Catalunya (UPC), Av. Diagonal, 647, 08028 Barcelona, Spain

[2]. Satsangi, K.P.; Das, D.B.; Babu, G.S.S.; Saxena, A.K. Performance analysis of grid interactive solar

photovoltaic plant in India.

Energy Sustain. Dev. 2018, 47, 9-16.

[3]. Mellit A.; Kalogirou, S. Artificial intelligence and internet of things to improve efficacy of diagnosis and remote sensing of

solar photovoltaic systems: Challenges, recommendations and future directions. Renew. Sustain. Energy Rev. 2021, 143, 110889.

[CrossRef]

[4]. Sadat, S.A.; Fini, M.V.; Hashemi-Dezaki, H.; Nazififard, M. Barrier analysis of solar PV energy development in the context of Iran

using fuzzy AHP-TOPSIS method. Sustain. Energy Technol. Assess. 2021, 47, 101549. [CrossRef]

[5]. Azizkhani, M.; Vakili, A.; Noorollahi, Y.; Naseri, F. Potential survey of photovoltaic power plants using Analytical Hierarchy

Process (AHP) method in Iran. Renew. Sustain. Energy Rev. 2017, 75, 1198-1206. [CrossRef]

[6]. Gorjian, S.; Zadeh, B.N.; Eltrop, L.; Shamshiri, R.R.; Amanlou, Y. Solar photovoltaic power generation in Iran: Development,

policies, and barriers. Renew. Sustain. Energy Rev. 2019, 106, 110-123. [CrossRef]

[7]. Shoeibi, S.; Kargarsharifabad, H.; Mirjalily, S.A.A.; Zargarazad, M. Performance analysis of finned photovoltaic/thermal solar air

dryer with using a compound parabolic concentrator. Appl. Energy 2021, 304, 117778. [CrossRef]

[8]. Kannan, D.; Moazzeni, S.; Darmian, S.M.; Afrasiabi, A. A hybrid approach based on MCDM methods and Monte Carlo simulation.

Volume 17, Issue 04, April/2025